Yale Cancer Center study reveals new pathway for brain tumor therapy

Share on facebook
Share on twitter
Share on linkedin
Share on email
Share on print

A study led by Yale Cancer Center researchers show the nucleoside transporter ENT2 may offer an unexpected path to circumventing the blood-brain barrier and enabling targeted treatment of brain tumors with a cell-penetrating anti-DNA autoantibody. 

The study was published in the Journal of Clinical Investigation Insight.

“These findings are very encouraging as the BBB prevents most antibodies from penetrating the central nervous system and limits conventional antibody-based approaches to brain tumors,” said corresponding author James E. Hansen, associate professor of therapeutic radiology, radiation oncology chief of the Yale Gamma Knife Center at Smilow Cancer Hospital.

Deoxymab-1 (DX1) is an unusual cell-penetrating autoantibody that localizes into live cell nuclei, inhibits DNA repair, and is synthetically lethal to cancer cells with defects in the DNA damage response. Researchers have now found that the transporter ENT2 facilitates brain endothelial cell penetration and BBB transport by DX1. In efficacy studies in mice models, DX1 crossed the BBB to suppress orthotopic glioblastoma and breast cancer brain metastases. 

“Our data demonstrate the ability of DX1 to cross the BBB and suppress brain tumors in multiple models, and we are particularly impressed that DX1 was able to yield these results as a single agent in these difficult to treat tumor models,” said co-corresponding author Jiangbing Zhou, associate professor of neurosurgery at Yale School of Medicine.

“We believe that the ENT2-linked mechanism that transports DX1 across the BBB and into tumors has potential to contribute to multiple new strategies in brain tumor therapy,” added Hansen. “In addition to establishing proof of concept for single agent use of DX1 in brain tumor models, we also now recognize the potential for DX1 to target linked cargo molecules to brain tumors or to be useful as a platform for designing additional brain tumor targeting antibodies, including DX1-based bispecific antibodies.”

Table of Contents

YOU MAY BE INTERESTED IN

The University of California, San Francisco and global oncology communities mourn the death of Felix Y. Feng, MD, a radiation oncologist and a leading figure in genitourinary cancer research. A professor of radiation oncology, urology and medicine, and vice chair of translational research at the UCSF Helen Diller Family Comprehensive Cancer Center, Feng died from cancer on Dec.10, 2024. He was 48.
The late Felix Feng, MD (center) with researchers Jonathan Chou, MD, PhD (left) and Lisa Chesner, PhD (right), in 2019.Photo by Noah BergerFelix Y. Feng, a genitourinary cancer research leader, died on Dec. 10, 2024. He was 48.This article is republished with permission by NRG Oncology.Dr. Feng was the former NRG Oncology Genitourinary Cancer Committee chair and an RTOG Foundation member. After years of dedicated and enthusiastic commitment to the NRG and previously the RTOG Genitourinary Cancer Committee, chairing or co-chairing 13 research protocols for NRG and RTOG, Dr. Feng was appointed committee chair in March 2018, following in the footsteps of Dr. Howard Sandler, his mentor. Dr. Feng was also a member of the RTOG Foundation Board of Directors.

Never miss an issue!

Get alerts for our award-winning coverage in your inbox.

Login