Caris Life Sciences submits two PMA applications to FDA for whole exome and whole transcriptome sequencing

Share on facebook
Share on twitter
Share on linkedin
Share on email
Share on print

Caris Life Sciences has submitted two Pre-Market Approval applications for MI Exome CDx and MI Transcriptome CDx to FDA.

MI Exome CDx, whole exome sequencing (DNA), and MI Transcriptome CDx, whole transcriptome sequencing (RNA), are precision medicine assays that include key companion diagnostic biomarkers with therapy claims, and detect all classes of alterations including genomic signatures for microsatellite instability, tumor mutation burden, and loss of heterozygosity.

MI Exome CDx is a next-generation sequencing-based test utilizing DNA isolated from formalin-fixed paraffin embedded tumor tissue specimens for the qualitative detection of genomic alterations. MI Exome CDx can identify genetic variants (single nucleotide variants, insertions and deletions), copy number alterations, MSI, TMB and LOH.

MI Transcriptome CDx is a next-generation sequencing-based test that utilizes RNA isolated from formalin-fixed paraffin embedded tumor tissue specimens for the qualitative detection of genomic and transcriptomic alterations. MI Transcriptome CDx is a broad, multi-gene panel utilized to identify gene fusions, transcript variants, genetic variants (single nucleotide variants, insertions and deletions), and gene expression changes. FDA granted MI Transcriptome CDx received Breakthrough Device designation in 2019.

Table of Contents

YOU MAY BE INTERESTED IN

In April 2025, announcements from the two most influential biomedical agencies in the US, the FDA and the NIH, declared that both will seek to reduce and minimize animal-based testing and experimentation. These declarations sparked joy in some circles, and deep concern in others that was reflected in a 28% fall in the share price of Charles River Labs (NYSE: NYSE:CRL). 
Over the past three decades, cancer genetics has transformed precision oncology. Germline testing has advanced from single-gene Sanger sequencing to parallel sequencing of hundreds of genes, while tumor (somatic) testing has expanded with the rise of targeted therapies based on point mutations, copy number changes and other alterations. 

Never miss an issue!

Get alerts for our award-winning coverage in your inbox.

Login