Parker Institute, CRI form collaboration on neoantigens

Share on facebook
Share on twitter
Share on linkedin
Share on email
Share on print

THE PARKER INSTITUTE for Cancer Immunotherapy and the Cancer Research Institute announced a Collaboration focused on neoantigens. The search for these unique cancer markers has become a robust area of research as scientists believe they may hold the key to developing a new generation of personalized, targeted cancer immunotherapies.

The collaboration, the Tumor neoantigEn SeLection Alliance (TESLA), includes 30 of the world’s leading cancer neoantigen research groups from both academia and industry. Because these tumor markers are both specific to each individual and unlikely to be present on normal healthy cells, neoantigens represent an optimal target for the immune system and make possible a new class of highly personalized vaccines with the potential for significant efficacy with reduced side effects.

Participating research groups will receive genetic sequences from both normal and cancerous tissues. Using each laboratory’s own algorithms, each group will output a set of predicted neoantigens that are anticipated to be present on the tumor cells and recognizable by the immune system. The predictions will then be validated through a series of tests to assess which predictions are most likely to be correct and recognizable by T-cells. Through this effort, each participant will be provided with data to inform and to further improve their algorithms and therefore the potential effectiveness of personalized neoantigen vaccines for cancer.

“Bringing together the world’s best neoantigen research organizations to accelerate the discovery of personalized cancer immunotherapies is exactly the type of bold research collaboration that I envisioned when launching the Parker Institute,” said Sean Parker, founder of the Parker Institute for Cancer Immunotherapy. “This alliance will not only leverage the immense talents of each of the researchers but will also harness the power of bioinformatics, which I believe will be critical to driving breakthroughs.”

The goal of the initiative is to help participating groups test and continually improve the mathematical algorithms they use to analyze tumor DNA and RNA sequences in order to predict the neoantigens that are likely to be present on each patient’s cancer and most visible to the immune system. In support of this, Parker Institute and CRI have partnered with the open science nonprofit, Sage Bionetworks, to manage the bioinformatics and data analysis.

Initially, the project is expected to focus on cancers such as advanced melanoma, colorectal cancer and non-small cell lung cancer that tend to have larger numbers of mutations and thus more neoantigens. Over time, the initiative will seek to broaden the relevance of neoantigen vaccines to a wide range of cancers.

Participants come from universities, biotech, the pharmaceutical industry and scientific nonprofits. The researchers represent a wide swath of scientific fields, including immunology, data science, genomics, molecular biology, and physics and engineering.

Neoantigens are markers present on the surface of cancer cells but absent on normal tissue, making them attractive drug target candidates. They commonly arise from mutations that occur as tumor cells rapidly divide and multiply. The immune system can recognize these markers as “foreign,” and as a result, target the cancer cell for destruction. In order to predict which neoantigens will be present on a patient’s tumor, researchers have developed software programs to analyze tumor DNA and output the unique set of markers that the immune system is most likely to recognize.

YOU MAY BE INTERESTED IN

For nearly 25 years, business executive Lou Weisbach and urologist Richard J. Boxer have argued that finding the money to finance the cures for devastating diseases is not as difficult as it appears. To start finding the cures, the U.S. Department of the Treasury needs to issue some bonds—$750 billion worth. Next, you hire CEOs—one...

There is general agreement that the United States spends too much on health care, especially on pharmaceuticals.  But what we spend on drugs is not simply a function of price. If eggs double in price, people can simply cut the number of eggs they eat in half.  Simply stated, cost is the product of (price per unit times the number of units purchased). 
What did President Richard M. Nixon and Senator Edward M. Kennedy have in common? They each played a pivotal role in the passage of the National Cancer Act signed by Nixon on Dec. 23, 1971. The NCA established the National Cancer Program authorizing the initial investment in the NCI-designated Cancer Centers Program. 
When I first proposed targeting PCNA (proliferating cell nuclear antigen) as a therapeutic approach, the response I got was: “No one will ever make a drug against PCNA. It’s undruggable.” The protein lacks enzymatic activity, has a disordered region, and binds to over 200 other proteins within the cell. From a traditional drug development perspective, these characteristics made PCNA an impossible target.

Never miss an issue!

Get alerts for our award-winning coverage in your inbox.

Login