NIH completes in-depth genomic analysis of 33 cancer types

Share on facebook
Share on twitter
Share on linkedin
Share on email
Share on print

Researchers funded by the NIH have completed a genomic analysis, known as the PanCancer Atlas, on a data set of molecular and clinical information from over 10,000 tumors representing 33 types of cancer.

The PanCancer Atlas, published as a collection of 29 papers across a suite of Cell journals, sums up the work accomplished by the Cancer Genome Atlas, a collaboration initiated and supported by the NHGRI and NCI, both part of NIH. The program, with over $300 million in total funding, involved upwards of 150 researchers at more than two dozen institutions across North America.

The project focused on cancer genome sequencing, and different types of data analyses, such as investigating gene and protein expression profiles, and associating them with clinical and imaging data.

The PanCancer Atlas is divided into three main categories, each anchored by a summary paper that recaps the core findings for the topic. The main topics include: cell of origin, oncogenic processes, and oncogenic pathways. Multiple companion papers report in-depth explorations of individual topics within these categories.

In the first summary paper, the authors summarize the findings from a set of analyses that used a technique called molecular clustering, which groups tumors by parameters such as genes being expressed, abnormality of chromosome numbers in tumor cells, and DNA modifications. The paper’s findings suggest that tumor types cluster by their possible cells of origin, a result that adds to our understanding of how tumor tissue of origin influences a cancer’s features and could lead to more specific treatments for various cancer types.

The second summary paper presents a broad view of the TCGA findings on the processes that lead to cancer development and progression. Specifically, the authors noted that the findings identified three critical oncogenic processes: mutations, both germline and somatic; the influence of the tumor’s underlying genome and epigenome on gene and protein expression; and the interplay of tumor and immune cells. These findings will help prioritize the development of new treatments and immunotherapies for a wide range of cancers.

The final summary paper details TCGA investigations on the genomic alterations in the signaling pathways that control cell cycle progression, cell death and cell growth, revealing the similarities and differences in these processes across a range of cancers.

YOU MAY BE INTERESTED IN

The nagging pain in Mia Sandino’s right knee set in in September 2018, and throughout her freshman year at the University of Washington, she tried to ignore it. “I was being a very naive and invincible-feeling 19-year-old,” Sandino told The Cancer Letter. “I didn’t put two and two together that this area of the knee that...

Rick Pazdur, MD, the newly appointed director for the Center for Drug Evaluation and Research at the FDA, has been described as “greyhound thin” as a result of his dedication to cycling and lifting weights in the gym each day and, for a long time, a vegetarian diet. I first met him when he was the director of the Office of Oncology Drug Products (ODP) within CDER, in 2009.
When it comes to fighting cancer today, collaboration is key. At a time when funding is uncertain, yet innovative breakthroughs are accelerating every day, it’s more important than ever for oncologists, scientists, academic researchers, and community physicians, to come together to share knowledge and gain insights about the forefront of cancer research.

Never miss an issue!

Get alerts for our award-winning coverage in your inbox.

Login