Jessica Karen Wong joins Fox Chase

Share on facebook
Share on twitter
Share on linkedin
Share on email
Share on print

Jessica Karen Wong will join Fox Chase Cancer Center July 1 as assistant professor in the academic clinical track in the Department of Radiation Oncology.

Wong will join the staff upon completion of her radiation oncology residency program at Fox Chase, where she served as chief resident last year and won the RSNA Roentgen Resident/Fellow Research Award.

Before attending medical school, Wong earned her masters of engineering in biomedical engineering from the Harvard-MIT Division of Health Sciences and Technology. She received her medical degree from the University of Tennessee College of Medicine on multiple scholarships.

Table of Contents

YOU MAY BE INTERESTED IN

For nearly 25 years, business executive Lou Weisbach and urologist Richard J. Boxer have argued that finding the money to finance the cures for devastating diseases is not as difficult as it appears. To start finding the cures, the U.S. Department of the Treasury needs to issue some bonds—$750 billion worth. Next, you hire CEOs—one...

There is general agreement that the United States spends too much on health care, especially on pharmaceuticals.  But what we spend on drugs is not simply a function of price. If eggs double in price, people can simply cut the number of eggs they eat in half.  Simply stated, cost is the product of (price per unit times the number of units purchased). 
What did President Richard M. Nixon and Senator Edward M. Kennedy have in common? They each played a pivotal role in the passage of the National Cancer Act signed by Nixon on Dec. 23, 1971. The NCA established the National Cancer Program authorizing the initial investment in the NCI-designated Cancer Centers Program. 
When I first proposed targeting PCNA (proliferating cell nuclear antigen) as a therapeutic approach, the response I got was: “No one will ever make a drug against PCNA. It’s undruggable.” The protein lacks enzymatic activity, has a disordered region, and binds to over 200 other proteins within the cell. From a traditional drug development perspective, these characteristics made PCNA an impossible target.

Never miss an issue!

Get alerts for our award-winning coverage in your inbox.

Login